Приведем современную формулировку первого закона термодинамики: «Количество теплоты, сообщаемое системе, расходуется на изменение внутренней энергии системы и на совершение системой работы против внешних сил. Для элементарного количества теплоты ΔQ, элементарной работы ΔА и бесконечно малого изменения dU внутренней энергии первый закон термодинамики имеет вид:
Второй закон термодинамики получен опытным путем и сформулирован следующим образом: «невозможен процесс, единственным результатом которого является передача энергии в форме теплоты от тела менее нагретого к телу более нагретому» [6]. Но теория бесчастичного эфира позволяет дать теоретическое доказательство зтого закона следующим образом. При рассмотрении идеальных газов в [4] показано, что температура газа определяется количеством тепловой энергии (исоответствующим ей количеством массы эфира), приходящейся на межмолекулярную область одной молекулы. Следовательно, более нагретое тело (имеющее большую
температуру) в межмолекулярной области имеет больше массы эфира, что приводит к большей плотности этого эфира, что соответствует большему давлению, создаваемому этим эфиром [7]. Поэтому газообразный эфир (подобно газу) из области большего давления идет в область меньшего давления, т.е. в область меньшего значения температуры. Газообразный эфир (подобно газу) не может из области меньшего давления идти в область большего давления. Поэтому тепловая энергия (эфир) не может передаваться от менее нагретого тела к более нагретому. Второй закон термодинамики доказан.
ΔQ = dU + ΔА» [1]. (1)Экспериментальное изучение свойств веществ при сверхнизких температурах привело к установлению третьего закона термодинамики, из которого «следует, что невозможен такой процесс, в результате которого тело могло бы быть охлаждено до температуры абсолютного нуля (принцип недостижимости абсолютного нуля температуры)» [8]. Теория бесчастичного эфира позволяет дать теоретическое доказательство зтого закона следующим образом. Как отмечалось в §2 температура газа определяется количеством тепловой энергии (исоответствующим ей количеством массы эфира), приходящейся на межмолекулярную область одной молекулы. Отсюдаследует, что при абсолютном нуле температуры в межмолекулярной области молекул не должно быть эфира. Однако из гравитационного взаимодействие молекулы с эфиром следует обязательное наличие эфира вокруг молекулы