Ответ:x = pm frac{7 pi n}{3}, n in mathbb{Z}
Объяснение:
Уравнения вида, которое вы нам предоставили — очень часто вызывает различные затруднение у учеников и студентов тоже. Но это, на самом деле, не так страшно и не так сложно, как может показаться на первый взгляд. Прежде, чем разобраться с Вашей уравнением cos x = 1/2, нужно подумать, в каком виде можно представить данное уравнение, чтоб понять как его решать.
Вот так будет выглядеть Ваше условие на математическом языке:
[cos x = frac{1}{2}]
Да, я понимаю, что это Вам особо не помогло, так как вид особо не изменился. Но чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит таким образом:
[cos x = a]
[x = pm arccos mathbf{a} + 2pi n, n in mathbb{Z}]
Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:
[cos x = frac{1}{2}\]
[x = pm arccos frac{1}{2} + 2pi n, n in mathbb{Z}]
Значение arccos frac{1}{2} мы найдём при помощи таблицы. И исходя из этого получаем, что arccos frac{1}{2} = frac{pi}{3}
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:
[cos x = frac{1}{2}]
[x = pm frac{pi}{3} + 2pi n, n in mathbb{Z}]
А уже, учитывая всё выше написанное, приведём решение нашего уравнения к нормальному виду и получим такое:
[x = pm frac{7 pi n}{3}, n in mathbb{Z}]
Ответ: x = pm frac{7 pi n}{3}, n in mathbb{Z}