search points attachment profile arrow left arrow right star heart verified symbols equation arrow-down question mark check menu accountancyadministrationagriculturalalgebraallarabicartart_musicbelarusbelarus_altbiologybusinesscatalachemistrychineseeconomicsegzamenglishentrepreneurshipenvironmentethicseuskarafirst_aidfrenchgalegogeographygeologygeometrygermangrammarhealthhistoryindia_langindonesian_langinformaticsitalianjapanesekazachkazach_altkoreanlanguagelatinlawlife_scienceliteraturelogicmathematicsmusicnigerian_langother_languagesotherspedagogicsphilosophyphysical_educationphysicspoliticspsychologyreligionrpa_langrussianrussian_altsciencesecurityskillssocial_sciencesociologyspanishstatisticstechnologytourismtrafficukrainianukrainian_altukrainian_literaturewos_civilisation accountancyadministrationagriculturalalgebraall_1arabicartart_music_2belarusbelarus_altbiologybusiness_2catalachemistry_1chineseeconomicsexam_3englishentrepreneurshipenvironment_2ethicseuskarasecurity_1frenchgalegogeography_4geology_4geometrygermangrammarhealthhistoryindia-langindonesian-langinformaticsitalianjapanesekazachAsset 230koreanlanguagelatinlawlife-scienceliteraturelogic_2mathematicsmusicnigerian-langotherlanguagesother_1pedagogicsphilosophyphysical_educationphysicspoliticspsychologyreligion_1rpa-langrussianrussian_altsciencesecurity_3_mskills_1allsocial_science_5_msociologyspanishstatisticstechnologytourismtrafficukrainianukrainian_altukrainian_literaturewos_civilisation

Ответ

Проверено экспертом

Автор - Misha001192

 sin( alpha )  +  sqrt{3}  cos( alpha )  = 0 \  \

Разделим обе части на 2

 frac{1}{2}  sin( alpha )   +  frac{ sqrt{3} }{2}  cos( alpha )  = 0 \  \  cos( frac{pi}{3} )  sin( alpha )  +  sin( frac{pi}{3} )  cos( alpha )  = 0 \  \  sin( alpha  +  frac{pi}{3} )  = 0 \  \  sin( gamma  )  = 0 \  \  gamma  = pi : n \  \  alpha  +  frac{pi}{3}  = pi : n \  \  alpha  =  -  frac{pi}{3}  + pi : n \  \

ОТВЕТ: (-п/3) + пn , n принадлежит Z.

Ответы и объяснения

По всем вопросам пишите на - vashurokk@rambler.ru
Сайт znanija.net не имеет отношения к другим сайтам и не является официальным сайтом компании.