search points attachment profile arrow left arrow right star heart verified symbols equation arrow-down question mark check menu accountancyadministrationagriculturalalgebraallarabicartart_musicbelarusbelarus_altbiologybusinesscatalachemistrychineseeconomicsegzamenglishentrepreneurshipenvironmentethicseuskarafirst_aidfrenchgalegogeographygeologygeometrygermangrammarhealthhistoryindia_langindonesian_langinformaticsitalianjapanesekazachkazach_altkoreanlanguagelatinlawlife_scienceliteraturelogicmathematicsmusicnigerian_langother_languagesotherspedagogicsphilosophyphysical_educationphysicspoliticspsychologyreligionrpa_langrussianrussian_altsciencesecurityskillssocial_sciencesociologyspanishstatisticstechnologytourismtrafficukrainianukrainian_altukrainian_literaturewos_civilisation accountancyadministrationagriculturalalgebraall_1arabicartart_music_2belarusbelarus_altbiologybusiness_2catalachemistry_1chineseeconomicsexam_3englishentrepreneurshipenvironment_2ethicseuskarasecurity_1frenchgalegogeography_4geology_4geometrygermangrammarhealthhistoryindia-langindonesian-langinformaticsitalianjapanesekazachAsset 230koreanlanguagelatinlawlife-scienceliteraturelogic_2mathematicsmusicnigerian-langotherlanguagesother_1pedagogicsphilosophyphysical_educationphysicspoliticspsychologyreligion_1rpa-langrussianrussian_altsciencesecurity_3_mskills_1allsocial_science_5_msociologyspanishstatisticstechnologytourismtrafficukrainianukrainian_altukrainian_literaturewos_civilisation
Автор - Yana765

Докажите, что точки пересечения парабол y=x^2-5 и x=y^2-4 лежат на одной окружности

Ответ

Проверено экспертом

Автор - 000LeShKa000

Доказательство:

Почленно сложим данные уравнения:

x + y = y^2 - 4 + x^2 - 5

И попробуем уложить все в сумму квадратов

x^2 - x + y^2 - y - 9 = 0\(x^2-x+frac{1}{4}) + (y^2 - y + frac{1}{4}) =9frac{1}{2}\(x-frac{1}{2})^2 + (y - frac{1}{2})^2 = 9frac{1}{2}

И если некоторая точка A(x₀, y₀) действительно удовлетворяет этим уравнениям, то она также должна удовлетворять и уравнению, которое мы вывели. А это не что иное как уравнение окружности.

Ответы и объяснения

По всем вопросам пишите на - vashurokk@rambler.ru
Сайт znanija.net не имеет отношения к другим сайтам и не является официальным сайтом компании.