search points attachment profile arrow left arrow right star heart verified symbols equation arrow-down question mark check menu accountancyadministrationagriculturalalgebraallarabicartart_musicbelarusbelarus_altbiologybusinesscatalachemistrychineseeconomicsegzamenglishentrepreneurshipenvironmentethicseuskarafirst_aidfrenchgalegogeographygeologygeometrygermangrammarhealthhistoryindia_langindonesian_langinformaticsitalianjapanesekazachkazach_altkoreanlanguagelatinlawlife_scienceliteraturelogicmathematicsmusicnigerian_langother_languagesotherspedagogicsphilosophyphysical_educationphysicspoliticspsychologyreligionrpa_langrussianrussian_altsciencesecurityskillssocial_sciencesociologyspanishstatisticstechnologytourismtrafficukrainianukrainian_altukrainian_literaturewos_civilisation accountancyadministrationagriculturalalgebraall_1arabicartart_music_2belarusbelarus_altbiologybusiness_2catalachemistry_1chineseeconomicsexam_3englishentrepreneurshipenvironment_2ethicseuskarasecurity_1frenchgalegogeography_4geology_4geometrygermangrammarhealthhistoryindia-langindonesian-langinformaticsitalianjapanesekazachAsset 230koreanlanguagelatinlawlife-scienceliteraturelogic_2mathematicsmusicnigerian-langotherlanguagesother_1pedagogicsphilosophyphysical_educationphysicspoliticspsychologyreligion_1rpa-langrussianrussian_altsciencesecurity_3_mskills_1allsocial_science_5_msociologyspanishstatisticstechnologytourismtrafficukrainianukrainian_altukrainian_literaturewos_civilisation
Автор - skarlett6

найти R и r для треугольника ABC если АВ=4 АС=6 угол А=60°​

Ответ

Проверено экспертом

Автор - Senpai908

По теореме косинусов

BC^2=AB^2+AC^2-2ABcdot ACcdot cos angle A\ \ BC^2=4^2+6^2-2cdot 4cdot 6cdot cos 60^circ\ \ BC^2=16+36-2cdot 24cdot dfrac{1}{2}\ \ BC^2=28\ \ BC=2sqrt{7}

По теореме синусов

dfrac{BC}{sin angle A}=2R~~~Rightarrow~~~ R=dfrac{BC}{2sin 60^circ}=dfrac{2sqrt{7}}{sqrt{3}}=boxed{dfrac{2sqrt{21}}{3}}

Площадь треугольника ABC: S=dfrac{1}{2}cdot ABcdot ACsin angle A=dfrac{1}{2}cdot4cdot 6cdot dfrac{sqrt{3}}{2}=6sqrt{3} кв. ед.

С другой стороны S=dfrac{Pr}{2} отсюда и выразим радиус вписанной окружности

r=dfrac{2S}{P}=dfrac{2cdot 6sqrt{3}}{4+6+2sqrt{7}}=boxed{dfrac{6sqrt{3}}{5+sqrt{7}}}

Ответы и объяснения

По всем вопросам пишите на - vashurokk@rambler.ru
© 2025 Все права защищены