ДАНО

НАЙТИ
1 - интервалы монотонности
2 - локальные экстремумы.
РЕШЕНИЕ
1)
Исследование на монотонность - точки разрыва функции - деление на 0 надо исключить. .
х+2 ≠ 0 и х ≠ - 2 - разрыв функции - есть.
D(x) - X∈(-∞;-2)∪(-2;+∞)
2)
Поиск экстремумов - в корнях первой производной.
= frac{-2x}{x+2}- frac{3-x^2}{(x+2)^2} )
Корни производной: х1 = - 3 и х2 = -1 (без решения).
Максимум - Y(-3) = 6, минимум - Y(-1) = 2.
Интервалы монотонности.
Убывает - Х∈(-∞;-3)∪(-1;+∞)
Возрастает - X∈(-3;-2)∪(-2;-1)
Точка перегиба функции - в точке разрыва - при Х= -2 - без анализа второй производной.
График функции на рисунке в приложении.