Сделаем и рассмотрим рисунок.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.⇒
АА₁ =3√ 3
АО=2√ 3
ОА₁ =√ 3
Треугольник СОВ по условию прямоугольный,
АА₁ - медиана ΔАВС,
СА₁ =ВА₁ ⇒
ОА₁ - медиана прямоугольного треугольника СОВ
Медиана прямоугольного треугольника, проведенная из прямого угла к гипотенузе, равна ее половине
Следовательно, СА₁ =ВА₁ =ОА₁ =√ 3
и
СВ=2√ 3
В₁ - середина АС
С₁ - середина АВ
В₁ С₁ - средняя линия треугольника АВС
Отсюда его медиана АА₁ делится этой средней линией пополам.
АМ=АА₁ :2=1,5√ 3
В треугольнике АСА₁ отрезок В₁М является средней линией и равен половине СА₁
В₁М=0,5√ 3
Из прямоугольного ⊿ АМВ₁ найдем АВ₁ по т. Пифагора:
АВ₁²=АМ² -В₁М²АВ₁ =√(6,75- 0,75)=√6Точка В₁ - середина АС.СВ1=АВ1=√6
Из прямоугольного треугольника ВСВ₁ по т. Пифагора найдем ВВ₁
ВВ₁ =√(СВ²+СВ₁²)=√(12+6)=√18=3√2
Найдем гипотенузу АВ по т. Пифагора
АС=2 АВ₁ =2√6
АВ=√(АС²+ ВС²)=√{ (2√ 6)² +(2√3 )²}=√36=6
вторая медиана СС1 равна половине гипотенузы Δ АВС
СС₁ =3, и это меньше, чем 3√2
Следовательно, ВВ₁ - большая из данных медиан и равна 3√2
---
bzs@