1. ΔABC:. AB=5 см, BC=7 см, AC=√18 см
<A -бОльший угол Δ АВС (против бОльшей стороны в треугольнике лежит бОльший угол).
по теореме косинусов:
BC²=AB²+AC²-2*AB*AC*cos<A
7²=5²+(√18)²-2*5*√18*сos<A
49-25-18=-10√18*cos<A
6=-10*3*√2*cos<A
cos<A=-1/5√2
<A=arccos(-1/(5√2))
<A≈98,13°.
2. ΔABC: AB=16 см, AC=18 см, BC=26 см
АК- медиана, проведенная к большей стороне. из ΔАВК по теореме косинусов: AK²=AB²+(BC/2)²-2*AB*(BC/2)*cos<B. cos<B=?
ΔАВС по теореме косинусов: AC²=AB²+BC²-2*AB*BC*cos<B
18²=16²+26²-2*16*26*cos<B
324-256-676=-2*16*26*cos<B
-608=-2*16*26*cos<B
cos<B=608/(2*16*26)
ΔABK:
AK²=16²+13²-2*16*13*608/(2*16*26)
AK²=256+169-304
AK²=121
AK=11 см