Ответ:6 см
Объяснение:
1.в трапецию можно вписать окружность тогда, когда сумма оснований равна сумме боковых сторон.
Следовательно, можно найти вторую боковую сторону:
6+27=13+х
33=13+х
х=33-13
х=20
20 см - вторая боковая сторона
2. Радиус вписанной окружности в трапецию равен половине высоты трапеции.
Высота трапеции неизвестна. Её можно узнать, найдя площадь трапеции.
Формула площади трапеции по четырем сторонам :
подставляем все значения в эту формулу, учитывая, что а=6, б=27см, с=13 см, д=20 см, и находим площадь, которая равна 198 см2.
3. Ну а теперь можно приступить к нахождению высоты, зная площадь и основания.
У нахождения площади также существует формула: (а+б)/2*высоту
Подставляем все известные значения.
(6+27)/2*высоту=198
33/2*высоту=198
высота=198*2/33
Высота равна 12 см.
4. Радиус круга: 12/2 = 6 см.