Автор - Akira2002

Способ образования носителей,особенности протекания тока в среде:металлы ,полупроводники,вакуум,газ,жидкости.

Ответ

Автор - nbyrsanu99

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.


В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.



Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит



Электрохимический эквивалент вещества - табличная величина.


Второй закон Фарадея:



Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.


Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.



Каждое вещество характеризуется собственным температурным коэффициентом сопротивления - табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.


Явление сверхпроводимости. При температурах близких к абсолютному нулю (-2730C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость - микроскопический квантовый эффект.


Применение электрического тока в металлах

Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.



Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.


Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.


Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма - наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.


Прохождение электрического тока через газ называется газовым разрядом.


В "рекламной" неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой "живую плазму".


Между электродами сварочного аппарата возникает дуговой разряд.


Дуговой разряд горит в ртутных лампах - очень ярких источниках света.


Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!


Для коронного разряда характерно свечение газа, образуя "корону", окружающую электрод. Коронный разряд - основной источник потерь энергии высоковольтных линий электропередачи.




Электрический ток в вакууме

А возможно ли распространение электрического тока в вакууме (от лат. vacuum - пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии - испускания веществом электронов при нагревании.


Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) - приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток - катод, холодный электрод, собирающий термоэлектроны - анод.

Ответы и объяснения

Сервис носит ознакомительный характер, вся информация, а в частности вопросы и ответы, которые задают и отвечают пользователи.
© 2026 Все права защищены Политика конфиденциальности Контакты
search points attachment profile arrow left arrow right star heart verified symbols equation arrow-down question mark check menu accountancyadministrationagriculturalalgebraallarabicartart_musicbelarusbelarus_altbiologybusinesscatalachemistrychineseeconomicsegzamenglishentrepreneurshipenvironmentethicseuskarafirst_aidfrenchgalegogeographygeologygeometrygermangrammarhealthhistoryindia_langindonesian_langinformaticsitalianjapanesekazachkazach_altkoreanlanguagelatinlawlife_scienceliteraturelogicmathematicsmusicnigerian_langother_languagesotherspedagogicsphilosophyphysical_educationphysicspoliticspsychologyreligionrpa_langrussianrussian_altsciencesecurityskillssocial_sciencesociologyspanishstatisticstechnologytourismtrafficukrainianukrainian_altukrainian_literaturewos_civilisation accountancyadministrationagriculturalalgebraall_1arabicartart_music_2belarusbelarus_altbiologybusiness_2catalachemistry_1chineseeconomicsexam_3englishentrepreneurshipenvironment_2ethicseuskarasecurity_1frenchgalegogeography_4geology_4geometrygermangrammarhealthhistoryindia-langindonesian-langinformaticsitalianjapanesekazachAsset 230koreanlanguagelatinlawlife-scienceliteraturelogic_2mathematicsmusicnigerian-langotherlanguagesother_1pedagogicsphilosophyphysical_educationphysicspoliticspsychologyreligion_1rpa-langrussianrussian_altsciencesecurity_3_mskills_1allsocial_science_5_msociologyspanishstatisticstechnologytourismtrafficukrainianukrainian_altukrainian_literaturewos_civilisation