Автор - aid28
Ответ:
Объяснение:
(b^(1/3)/(b-1) +b/(b^(4/3)-b^(2/3)))·(b^(1/3)-1)·(b-1)/b^(1/3)=(b+b^(2/3)-2)/(b^(1/3)+1)
Решаем по действиям. Начнем со 2-й дроби:
b/(b^(4/3)-b^(2/3))=b^(3/3)/(b^(2/3)·(b^(2/3)-1))=b^(1/3)/(b^(2/3)-1)
Складываем 1-ю и 2-ю дроби:
b^(1/3)/(b-1) +b^(1/3)/(b^(2/3)-1)=(b^(1/3)·(b^(2/3)-1)+b^(1/3)·(b-1))/((b-1)(b^(2/3)-1))=b^(1/3)·(b^(2/3)-1+b-1)/((b-1)(b^(2/3)-1))=b^(1/3)·(b+b^(2/3)-2)/((b-1)(b^(2/3)-1))
Полученный вид выражения:
b^(1/3)·(b+b^(2/3)-2)/((b-1)(b^(2/3)-1)) ·(b^(1/3)-1)·(b-1)/b^(1/3)=(b+b^(2/3)-2)/(b^(2/3)-1) ·(b^(1/3)-1)=(b+b^(2/3)-2)/((b^(1/3)-1)(b^(1/3)+1)) ·(b^(1/3)-1)=(b+b^(2/3)-2)/(b^(1/3)+1)